Comparative modeling of performance limits of solid state neutron detectors based on planar B-rich capture layers

نویسندگان

  • A. D. Harken
  • Brian W. Robertson
چکیده

Solid-state neutron detectors based only on boron-rich semiconductors are of interest for their potential to provide the highest thermal neutron detection efficiencies of any solid-state neutron detectors. A simple physical model, recently shown to generate thermal neutron capture product spectra that agree quantitatively with full-physics GEANT4 simulation, is used to compare the capture product energy spectra and the upper limits to neutron detection efficiency of planar conversion layer, sandwich and all-boron-carbide detectors for the case of normally incident, mono-energetic, thermal neutrons. All-boron-carbide semiconductor detectors are deduced to be greatly superior to all other boron-rich solid-state detector types in their maximal neutron detection efficiencies and potential for avoiding false-positive detector output signals in mixed radiation fields. If boron-carbide semiconductors of optimal quality and thickness in the range 20–50 μm were used in creating such detectors, the normal-incidence thermal neutron detection efficiencies could reach 60% to 90%, respectively, in total and still 48% to 78% using only the peak corresponding to the kinetic energy sum for the nuclei emitted in the most-probable 10B(n,α)7Li capture reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal-semiconductor-metal neutron detectors based on hexagonal boron nitride epitaxial layers

Hexagonal boron nitride (hBN) possesses extraordinary potential for solid-state neutron detector applications. This stems from the fact that the boron-10 (B) isotope has a capture cross-section of 3840 barns for thermal neutrons that is orders of magnitude larger than other isotopes. Epitaxial layers of hBN have been synthesized by metal organic chemical vapor deposition (MOCVD). Experimental m...

متن کامل

Towards high efficiency solid-state thermal and fast neutron detectors

Variety of applications of fast neutron detection utilize thermal neutron detectors and moderators. Examples include homeland security applications such as portal monitors and nuclear safeguards which employ passive systems for detection of fissile materials. These applications mostly rely on gas filled detectors such as 3He, BF3 or plastic scintillators and require high voltage for operation. ...

متن کامل

A two-dimensional numerical model of a planar solid oxide fuel cell

A two-dimensional CFD model of a planar solid oxide fuel cell (SOFC) has been developed.This model can predict the performance of SOFC at various operating and design conditions.The effect of Knudsen diffusion is accounted in the porous electrode (backing) and reaction zonelayers. The mathematical model solves conservation of electrons and ions and conservation ofspecies. The model is formulate...

متن کامل

A Comparative Study of Field Gamma-ray Spectrometry by NaI(Tl) and HPGe Detectors in the South Caspian Region

Natural radionuclides present in soil as well as certain anthropogenic radionuclides released to the environment are the major contributors to terrestrial outdoor exposures. In the assessment of human exposures from environmental radioactivity, besides the conventional method of soil and vegetation sampling combined with laboratory based analyses of environmental media, the other choice would b...

متن کامل

Trimethylboron as Single-Source Precursor for Boron−Carbon Thin Film Synthesis by Plasma Chemical Vapor Deposition

Boron−carbon (BxC) thin films are potential neutron converting layers for B-based neutron detectors. However, as common material choices for such detectors do not tolerate temperatures above 500 °C, a low temperature deposition route is required. Here, we study trimethylboron B(CH3)3 (TMB) as a single-source precursor for the deposition of BxC thin films by plasma CVD using Ar plasma. The effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017